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1. Introduction

One of the classical conjugate problems is a heat
transfer between a laminar forced convection and a

¯at plate of ®nite thickness, the bottom of which is
kept at a constant temperature. There have been sev-
eral reports on this problem, that is, Luikov [1],
Payvar [2], Karvinen [3], Pozzi and Lupo [4], Pop and

Ingham [5], TrevinÄ o et al. [6] and Vynnycky et al. [7].
In Refs. [1±5], heat conduction in the ¯at plate is
assumed to be one-dimensional. Recent studies [6,7]

take account of axial conduction in the ¯at plate.
Examination of the surface temperatures given by

the above-mentioned studies reveals that there are two

solution families on the surface temperature for the
case of one-dimensional heat conduction in the ¯at
plate: one by Refs. [1±3], the other by Refs. [4,5]. The

di�erence of the two solution families will be shown
later. The e�ect of the two-dimensional heat conduc-
tion on the surface temperature of the ¯at plate, which
appears near the leading edge, is not yet made so

clear.
This study tries to get a clear view of this classical

conjugate problem through examination of the be-

havior of the surface temperature with distance from
the leading edge. After deriving dimensionless groups
which determine the surface temperature of the ¯at

plate, the surface temperatures of the ¯at plate are cal-
culated numerically, then compared with the solutions
of the available studies.

2. Governing equations

A schematic diagram of the present problem is

shown in Fig. 1. A uniform ¯ow, whose velocity and

temperature are uin and Tin, respectively, ¯ows over a
¯at plate of ®nite thickness e. The laminar boundary
layer approximation is assumed to be valid in the

¯uid. The bottom of the plate (at z=e, the z-coordi-
nate is directed downward from the ¯at plate surface)
is maintained at a constant temperature Tb. The for-
ward surface of the plate (at x = 0) is assumed to be

adiabatic. The surface temperature of the plate (at
y=z = 0), Tw, is studied under a conjugate thermal
condition.

For the ¯uid ¯ow, the well-known Blasius's equation
and the boundary conditions ( f is the dimensionless
stream function and Z=y(uin/nfx )1/2, see

Nomenclature)

d3f

dZ3
� 1

2
f

d2f

dZ2
� 0

Z � 0: f � 0, df=dZ � 0; Z � 1: df=dZ � 1 �1�

are used [8].

The energy conservation equations for the ¯uid and
the ¯at plate in dimensional form are given by

u
@Tf

@x
� v

@Tf

@y
� af

@ 2Tf

@y2
�2�

@ 2Ts

@x 2
� @

2Ts

@z2
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where Tf , Ts are the temperatures in the ¯uid and the
¯at plate, respectively, af is the thermal di�usivity of

the ¯uid, and u, v are velocity components. The
boundary conditions are set as follows
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at z � e: Ts � Tb

at x � 0:
@Ts

@x
� 0, Tf � Tin

at x � 1:
@Ts

@x
� 0

at y � z � 0: Tf � Ts, ÿ lf
@Tf

@y
� ls

@Ts

@z

at y � 1: Tf � Tin

�4�

where lf , ls are the thermal conductivities of the ¯uid
and the ¯at plate, respectively.

3. Dimensionless groups

Since the x-directional conduction in the ¯uid is

neglected, the heat ¯ux in the ¯uid, qf , is parallel to
the y-axis as shown by a bold arrow in Fig. 1. In the
¯at plate, both the x- and z-directional conduction are

considered. As the e�ect of x-directional heat conduc-
tion is rapidly weakened with x, the ¯at plate can be
divided into two regions: a region near the leading
edge of the ¯at plate where the heat ¯ux in the ¯at

plate, qs, makes an oblique angle with the z-coordinate
(this region will be referred to as the non-parallel-
region hereinafter), and a region downward where the

heat ¯ux qs is parallel to the z-coordinate (the parallel-
region). qs's are shown by bold arrows in the ¯at plate
in Fig. 1. The situation can be seen in the isotherm

graphs given by Vynnycky et al. (Fig. 2 and Fig. 3 of
Ref. [7]).
For the parallel-region, `the vectorial dimensional

analysis which distinguishes phases' described in Ref.
[9] gives the following dimensionless relation for the
surface temperature of the ¯at plate

T �w � function of �Pr, x �� �5�

where T �w and x� are de®ned as

T �w � �Tw ÿ Tin�=�Tb ÿ Tin�, x � �
�
ls

lf

�2
afx

uine2
, �6�

and Pr is the Prandtl number of the ¯uid. Thus, de-
rived dimensionless x-coordinate x� is substantially
equivalent to the so-called Brun number Brx [1] (actu-

ally, for the case of the laminar boundary layer ¯ow a
relation x �ÿ1/2A Brx holds).
For the non-parallel-region, where vectorial dimen-

Nomenclature

af thermal di�usivity of the ¯uid
Brx Brun number; =(lf /ls)(e/x )Pr

m Re nx,
where m= 1/3, n = 1/2 for laminar

boundary layer ¯ow
e thickness of the ¯at plate
f dimensionless stream function; =c/

(nfuinx )1/2, where c is the dimensional
stream function

L length of the ¯at plate used in the numeri-

cal calculations
Pr Prandtl number
q heat ¯ux
r� dimensionless parameter e�ective in the

non-parallel-region; Eq. (8)
Rex Reynolds number; =uinx/nf
T temperature

T� dimensionless temperature; =(TÿTin)/
(TbÿTin)

u, v velocity component
x� dimensionless x-coordinate; Eq. (6)
x, y, z coordinates, see Fig. 1.

Greek symbols
z dimensionless z-coordinate; =z/e
Z dimensionless y-coordinate; =y(uin/nfx )1/2

l thermal conductivity
nf kinematic viscosity of the ¯uid.

Subscripts
b bottom of the ¯at plate

f ¯uid
in main stream condition
s ¯at plate

w surface of the ¯at plate.

Fig. 1. Schematic diagram of the problem.
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sional analysis cannot be applied, Eq. (3) is non-
dimensionalized as follows using x� and z=z/e

r�4
@ 2T �s
@x �2

� @
2T �s
@z2

� 0 �7�

where

T �s �
�
Ts ÿ Tin

Tb ÿ Tin

�
, r� �

�
ls

lf

� ���������
af

uine

r
: �8�

4. Numerical calculation

After the numerical calculations for the ¯at plate of
®nite length L, the e�ect of the ®niteness of the plate

length is excluded by dropping the calculation results
for the rear region of the ¯at plate (say x/L > 0.8).
This is reasonable, since the temperature gradient

rapidly becomes smaller downstream, so the end e�ect
is limited within a certain distance upstream from the
trailing edge of the plate. As the maximum value of y
is also limited in numerical calculation, this value,

ymax, is determined so that the ratio of the x-direc-
tional out¯ow at x=L to the total out¯ow is about
0.9.

Accordingly, in the third and the last lines in Eq.
(4),

at x � 1: at y � 1:

are replace with

at x � L: at y � ymax :

respectively.
The ¯ow ®eld is obtained by numerically integrating

Eq. (1) using the bi-section method and the Runge±
Kutta method. For reference, the calculated value of
(d2f/dZ 2)Z=0 and (v Re 1/2x /uin)Z=1 are 0.33206, 0.8605

compared with those of 0.33206, 0.8604 given in Ref.
[8].
To obtain the temperature ®eld, Eqs. (2) and (3) are

then numerically solved by a FORTRAN program
based on the SIMPLE algorithm [10], u, v in Eq. (2)
being supplied with the above obtained ¯ow solution.
This program, under the constant temperature con-

dition throughout the ¯at plate, gives values of Nux/
Pe 1/2x (where Nux is the local Nusselt number, Pex the
local Peclet number) within 7.5% compared with that

of the theoretical result Nux/Pe
1/2
x =0.332Prÿ1/6 for the

constant wall temperature.
In the present calculations, the ¯at plate is the epoxy

resin, and the ¯uid is the air [Pr = 0.72,
nf=1.604 � 10ÿ5 m2/s, lf=2.614 � 10ÿ2 W/(m K)] or
the water [Pr = 7.1, nf=1.010 � 10ÿ6 m2/s, lf=0.5947

W/(m K)]. The value of ls/lf is 11.5 for the air case
and 0.504 for the water case. The value of L/e covers

from 0.2 to 500.

5. Results and comparisons

The calculated results of the surface temperature of
the ¯at plate for the air and for the water are shown in
Fig. 2. Transition from the non-parallel-region to the

parallel-region can be seen, and as x� becomes smaller
in the non-parallel-region, the surface temperature
approaches some constant value depending on the

value of r�. As the value of r� approaches zero, the
non-parallel-region disappears and the whole ¯at plate
becomes the parallel-region and this is the case treated

in Refs. [1±5]. The surface temperature T �w for
Pr = 0.01 by Vynnycky et al. [7] are also shown for
reference. Their points are read by a ruler from Fig. 8
of Ref. [7], and rearranged using x�. The values of r�

are not shown, because their results do not extend to
the further smaller x� region.
In Fig. 3, the surface temperature corresponding to

the case r�=0 (that is, the parallel-region solution) is
shown, along with those reported by the previous
studies [1,2,5]. Judging from Luikov's [1] developing

process, his integral method solution is considered to
be valid around Pr = 1, and so is Payvar's result [2].
Luikov's solution, upon rearrangement, gives the

following equation

T �w � 1=�1� 0:331x �ÿ1=2 Prÿ1=6� �9�

in the present notation. The line of T �w for Pr = 0.72

is shown in Fig. 3 irrespective of the validity range of
his variable z (here z is de®ned by (3/2)(lf /ls)(e/dT) in
Ref. [1], where dT is the thickness of the thermal

boundary layer). Payvar's points are measured with a

Fig. 2. Surface temperature of the ¯at plateÐpresent results.
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ruler from Fig. 2 of Ref. [2] and the values of T �w and

x� are calculated for Pr= 0.72 by

x � � 1=�Pr1=3 Br2x�, T �w � 1ÿ Fw �10�

(Brx, with m = 1/3 and n = 1/2, and Fw follow the
de®nitions of Ref. [2]) on the basis of Eqs. (20), (18),
(9), (7) and (17) of Ref. [2]. The present result com-

pares well with those of Luikov [1], Payvar [2] and
Karvinen [3]. Although Karvinen's result is not shown
here, his result almost coincides with Payvar's. These
comprise the ®rst solution family.

The result by Pop and Ingham (Tables 1 and 2 of
Ref. [5]) is also shown on the same ®gure, their dimen-
sionless axial coordinate being converted by

x � � x2=Pr

�x follows their definition� �11�
on the basis of Eqs. (5a), (5b) and (15b) of Ref. [5].
The result by Pop and Ingham and the result by Pozzi

and Lupo (Fig. 2 of Ref. [4]), which agree well with
each other, deviate far from the ®rst solution family.
This is the second solution family.

If the x� value of the Pop and Ingham's result were
multiplied by (1/2)2, then their result would agree well
with the present result, and there would be no two sol-

ution families. Any cause of this discrepancy between
the two solution families is not known at the present
stage.

6. Concluding remarks

The surface temperature of the ¯at plate under the
classical conjugate condition is studied, and it is shown

that the ¯at plate is divided into two regions by the
dominant directions of the heat ¯uxes in the ¯uid and

the ¯at plate: the non-parallel-region and the parallel-
region. r� is the sole dimensionless parameter in the
non-parallel-region and starting from a de®nite value

determined by r�, the surface temperature ®rst crawls,
then it begins to rise and merges into the parallel-
region solution. The e�ective dimensionless x-coordi-

nate throughout the whole region is x�, which is sub-
stantially equivalent to the Brun number (BrxA x �ÿ1/2

for the laminar boundary layer ¯ow).

There are two solution families for the parallel-
region solution for the surface temperature. Judging
from the general validity of the integral method in the
laminar boundary layer theory, it is expected that a

valid solution should fall into the integral method sol-
ution within certain errors around Pr = 1. This
ensures the validity of the present solution.
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